a2 United States Patent

Fernando et al.

US009152451B2

US 9,152,451 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

METHOD OF DISTRIBUTING PROCESSOR
LOADING BETWEEN REAL-TIME
PROCESSOR THREADS

Applicant:

Inventors:

Assignee:

GM GLOBAL TECHNOLOGY
OPERATIONS LLC, Detroit, MI (US)

Jana M Fernando, Torrance, CA (US);
Steven E. Schulz, Torrance, CA (US);
Brian A Welchko, Torrance, CA (US)

GM Global Technology Operations
LLC, Detroit, MI (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 294 days.

Appl. No.: 13/733,475

Filed: Jan. 3, 2013

Prior Publication Data

US 2014/0189709 A1l Jul. 3, 2014

Int. CL.

GO6F 9/46 (2006.01)

U.S. CL

CPC e GO6F 9/46 (2013.01)

10

~

(58) Field of Classification Search
None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,189,022 B1* 2/2001 BINnsccccoooeviviiininne 718/100
7,020,877 B2* 3/2006 Dailey 718/102
8,615,765 B2* 12/2013 Jensenetal. 718/104

* cited by examiner

Primary Examiner — Lewis A Bullock, Jr.
Assistant Examiner — Jacob Dascomb
(74) Attorney, Agent, or Firm — Quinn Law Group, PLL.C

(57) ABSTRACT

A method of distributing processor loading in a real-time
operating system between a high frequency processing task
and a lower frequency processing task, the method including:
making a processing request to the high frequency processing
task from the lower frequency processing task, the processing
request including a plurality of discrete processing com-
mands; queuing the plurality of discrete processing com-
mands; and executing a subset of the queued processing com-
mands with the execution of each of a plurality of high
frequency processing tasks such that the execution of the
plurality of discrete processing commands is distributed
across the plurality of high frequency processing tasks.

11 Claims, 1 Drawing Sheet

U.S. Patent Oct. 6, 2015 US 9,152,451 B2

10

A
12 > 14 » 16 » 18
FIG. 1
20 40
"~ ~ y
3 N
2 42
-
62
+ 64
46 '
Y g6
i I
— 28
I FIG. 2C
2 52

FIG. 2A FIG. 2B

US 9,152,451 B2

1
METHOD OF DISTRIBUTING PROCESSOR
LOADING BETWEEN REAL-TIME
PROCESSOR THREADS

TECHNICAL FIELD

The present invention relates generally to methods of trans-
ferring processing activity between different threads in a real-
time processing environment.

BACKGROUND

A real time operating system is an operating environment
for software that facilitates multiple time-critical tasks being
performed by a processor according to predetermined execu-
tion frequencies and execution priorities. Such an operating
system includes a complex methodology for scheduling vari-
ous tasks such that the task is complete prior to the expiration
of'a deadline. In some data-intensive applications, movement
of raw data and/or other processor-intensive tasks may be
shared between tasks to ensure that the various deadlines are
satisfied.

SUMMARY

A method of distributing processor loading in a real-time
operating system between a high frequency processing task
and a lower frequency processing task includes: making a
processing request to the high frequency processing task from
the lower frequency processing task, the processing request
including a plurality of discrete processing commands; queu-
ing the plurality of discrete processing commands; and
executing a subset of the queued processing commands in
each of a plurality of successive iterations of the high fre-
quency processing task such that the execution of the plurality
of discrete processing commands is distributed across the
plurality of successive iterations of the high frequency pro-
cessing task. The processing request may include, for
example, copying a plurality of blocks of coherent data that
are required for the execution of the lower frequency process-
ing task.

In one configuration the method may further include deter-
mining a ratio of the execution frequency of the lower fre-
quency processing task to the execution frequency of the high
frequency processing task. The subset of processing com-
mands executed at each iteration of the high frequency pro-
cessing task may then be equal to the total number of initially
queued processing commands multiplied by the determined
ratio. Computing the number of tasks to be performed at each
iteration may occur in a processing task separate from the
high frequency processing task and the lower frequency pro-
cessing task.

The above features and advantages and other features and
advantages of the present invention are readily apparent from
the following detailed description of the best modes for car-
rying out the invention when taken in connection with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of a method of distributing pro-
cessor loading in a real-time operating system between a high
frequency processing task and a lower frequency processing
task.

FIG. 2A is a flow diagram of a high-frequency processing
task in a real-time operating system.

10

15

20

25

30

35

40

45

55

60

65

2

FIG. 2B is a flow diagram of a low frequency processing
task in a real-time operating system.

FIG. 2C is a flow diagram of a very low frequency process-
ing task in a real-time operating system.

DETAILED DESCRIPTION

Referring to the drawings, wherein like reference numerals
are used to identify like or identical components in the various
views, FIG. 1 schematically illustrates a method 10 of dis-
tributing processor loading in a real-time operating system
between a high frequency processing task and a lower fre-
quency processing task. As used herein, a “task” is a periodi-
cally executing computer code routine that is operative to
perform one or more computational functions.

In a real-time operating system, multiple different process-
ing tasks may be executed in a near synchronous manner.
Each task may include a plurality of computations that may be
performed on data made available to the processor. Each task
may be assigned a priority level and an execution frequency
that is based on the criticality and nature of the task, and the
processor may attempt to schedule the execution of the tasks
to ensure that each task is performed at its specified execution
frequency.

In certain instances, tasks that are executed at a lower
frequency may make processing requests of tasks that are
executed at a higher frequency. For example, if the lower
frequency task is operative to process certain sensory data, the
lower-frequency task may request that a higher frequency
task copy the data into a memory register so that it is acces-
sible by the slower task when needed. In this manner, the
lower frequency task may not be unduly delayed while await-
ing the data transfer. In some instances, the lower frequency
task may be the primary operating task, while higher fre-
quency tasks may be reserved for data handling and/or may be
generally subordinate to the requests of the lower frequency
tasks.

It has been found that when a lower frequency processing
task makes an unduly large processing request to a higher
frequency processing task, the processing time needed to
fulfill the request may exceed the target execution period
allotted to the high frequency task (i.e., the target execution
period being the inverse of the target execution frequency). In
this manner, the high frequency task may exceed its comple-
tion deadline, resulting in a slower execution frequency than
desired. This deviation from the ideal processing rate may
affect time-critical tasks, and/or may negatively affect system
stability.

With continued reference to FIG. 1,in a very general sense,
the present method 10 distributes the processing request
made to the high frequency task over a plurality of iterations
of'the high frequency task. For example, if the high frequency
processing task executes each iteration 10 times for each
iteration of the lower frequency task, then the processing
request may be distributed over 10 separate high frequency
task iterations, rather than performing the entirety of the
request in one single execution/iteration.

The method 10 begins at step 12 when the lower frequency
processing task makes a processing request to the high fre-
quency processing task. The processing request may include
a plurality of discrete processing commands, and may be
identified by a function-call and/or a registry bit that alerts the
high frequency processing task of a shared processing
request. An example of a processing request may include a
request to copy a collection of coherent data to memory
associated with the processor. The collection of coherent data
may be formed from a plurality of discrete blocks of data,

US 9,152,451 B2

3

which may each need to be separately marked and/or copied
(i.e., resulting in multiple discrete processing commands).

After the request is made in step 12, the processor may
queue the plurality of discrete processing commands in step
14. This command-queue may be made available to the high-
frequency processing task as an on-going log of outstanding
processing items.

In step 16, the processor may determine a maximum num-
ber of processing commands that may be executed at each
iteration of the high frequency processing task such that the
queued processing commands may be distributed across a
plurality of iterations of the high frequency processing tasks.
In one configuration, the maximum number of processing
commands may be a function of the desired execution fre-
quency of the lower frequency processing task, the desired
execution frequency of the high frequency processing task,
and the total number of requested commands in the queue. As
such, the processor may first determine a ratio of the execu-
tion frequency of the lower frequency processing task to the
execution frequency of the high frequency processing task.
Once the ratio is known, the number of processing commands
executed at each respective iteration of the high frequency
processing task may equal to the total number of initially
queued processing commands multiplied by the determined
ratio.

In step 18, the processor may execute a subset of the
queued processing commands with each iteration of the high
frequency processing task. The total number of executed pro-
cessing commands may be equal to the maximum number of
commands determined in step 16. In this manner, the execu-
tion of the plurality of discrete processing commands may be
distributed across the plurality of iterations of the high fre-
quency processing task, yet may be complete prior to the start
of the next iteration of the lower-frequency processing task.

In one configuration, the determination of the maximum
number of processing commands that may be executed at
each instance of the high frequency processing task (i.e., step
16) may occur in a processing task that is separate from the
aforementioned high frequency processing task and the lower
frequency processing task. For example, for reoccurring pro-
cessing requests, the computation of the maximum number of
tasks may occur in a processing task that has an even lower
frequency than either of the other two tasks.

FIGS. 2A, 2B, and 2C schematically illustrate a high fre-
quency processing task 20 (i.e., Task-0), a low frequency
processing task 40 (i.e., Task-1), and a very low frequency
processing task 60 (i.e., Task-2) that may embody the present
method 10 being used to perform an operation chiefly within
Task-1. As illustrated in FIG. 2B, Task-1(40) may begin at 42,
whereafter the processor may determine in 44 if the data is
available in memory to process. If it is, Task-1 (40) may
process the data in 46 and request new data for the subsequent
iteration in 48. Ifthe data is not yet available in 44, Task-1 (40)
may check if more or other blocks are available to process in
50, and end at 52 if nothing is left to perform. The action of
request new data for the subsequent iteration in 48 may
include making a processing request to Task-0 (20) by adding
a plurality of discrete processing commands to a processing
queue. Task-1 (40) may then iterate at a first frequency.

Referring to FIG. 2A, Task-0 (20) may begin at 22, fol-
lowed by a check at 24 to see if the queue is empty. If the
queue is not empty, Task-0 (20) may check at 26 to see if the
number of copied blocks is less than a “MaxBlocksPerTask.”
If so, Task-0 (20) may mark an additional block to be copied
at 28. Otherwise, Task-0 (20) may proceed to copy any block
that has been marked to be copied at 30 and end at 32. Task-0
(20) may then iterate at a second frequency that is faster than

20

25

30

40

45

4

the first frequency of Task-1 (40). In one configuration Task-0
(20) may execute between 5 and 500 times more frequently
than Task-1 (40).

Finally, referring to FIG. 2C, Task-2 (60) may begin at 62
and may determine the “MaxBlocksPerTask” variable in 64
by determining a ratio of the execution frequency of Task-1
(40) to the execution frequency of Task-0 (20), and multiply-
ing that ratio by the total number of initially queued process-
ing commands. Task-2 (60) may then end at 66, and iterate at
a third frequency, which may be slower than both the first
frequency of Task-1 (40) and the second frequency of Task-0
(20).

While the best modes for carrying out the invention have
been described in detail, those familiar with the art to which
this invention relates will recognize various alternative
designs and embodiments for practicing the invention within
the scope of the appended claims. It is intended that all matter
contained in the above description or shown in the accompa-
nying drawings shall be interpreted as illustrative only and not
as limiting.

The invention claimed is:

1. A method of distributing processor loading in a real-time
operating system between a high frequency processing task
and a lower frequency processing task, the method compris-
ing:

making a processing request to the high frequency process-

ing task from the lower frequency processing task, the
processing request including an initial number of dis-
crete processing commands;

queuing the initial number of discrete processing com-

mands;
determining a maximum number of discrete processing
commands from the initial number of discrete process-
ing commands that may be executed at each successive
iteration of the high frequency processing task by deter-
mining a ratio of the execution frequency of the lower
frequency processing task to the execution frequency of
the high frequency processing task and multiplying the
ratio by the initial number of discrete processing com-
mands;
setting a subset of the queued initial number of discrete
processing commands to have a number of discrete pro-
cessing commands equal to the determined maximum
number of discrete processing commands; and

executing the subset of the queued initial number of dis-
crete processing commands in each of a plurality of
successive iterations of the high frequency processing
task such that the execution of the plurality of discrete
processing commands is distributed across the plurality
of successive iterations of the high frequency processing
task.

2. The method of claim 1, further comprising computing a
number of processing commands to be executed in each of the
plurality of successive iterations of the high frequency pro-
cessing task.

3. The method of claim 2, wherein the computing occurs in
a processing task separate from the high frequency process-
ing task and from the lower frequency processing task.

4. The method of claim 1, wherein the plurality of discrete
processing commands are completed prior to the next execu-
tion of the lower frequency processing task.

5. The method of claim 1, wherein the processing request
includes copying a plurality of blocks of coherent data.

6. The method of claim 5, wherein the blocks of coherent
data are required for the execution of the lower frequency
processing task.

US 9,152,451 B2

5

7. A method of distributing processor loading in a real-time
operating system between a high frequency processing task
and a lower frequency processing task, the method compris-
ing:

making a processing request to the high frequency process-

ing task from the lower frequency processing task, the
processing request including an initial number of dis-
crete processing commands;

queuing the initial number of discrete processing com-

mands;

determining a maximum number of discrete processing

commands from the initial number of discrete process-
ing commands that may be executed at each successive
iteration of the high frequency processing task by deter-
mining a ratio of the execution frequency of the lower
frequency processing task to the execution frequency of
the high frequency processing task and multiplying the
ratio by the initial number of discrete processing com-
mands;

setting a subset of the queued initial number of discrete

processing commands to have a number of discrete pro-

10

15

20

6

cessing commands equal to the determined maximum
number of discrete processing commands; and

executing the discrete processing commands in each of'the
plurality of successive iterations of the high frequency
processing task such that the execution of the plurality of
discrete processing commands is distributed across the
plurality of successive iterations of the high frequency
processing task during a single iteration of the low fre-
quency processing task.

8. The method of claim 7, wherein the computing occurs in
a processing task separate from the high frequency process-
ing task and from the lower frequency processing task.

9. The method of claim 7, wherein the plurality of discrete
processing commands are completed prior to the next execu-
tion of the lower frequency processing task.

10. The method of claim 7, wherein the processing request
includes copying a plurality of blocks of coherent data.

11. The method of claim 10, wherein the blocks of coherent
data are required for the execution of the lower frequency
processing task.

